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Fig. 4. Signal-to-noise ratio as a function of tr~ for different 
accuracies of measurement. 

with 

62=<a}>/s~. 
Fig. 4 shows the variation of ~t as a function of a 2 for 
different values of the mean normalized error e. It 
demonstrates the loss of structural information for 
finite 6 as a 2 --, 1. There occurs an optimum 
signal-to-noise ratio for tr~ ~_ 1 - 6. 

Assume the critical value of /~ for the statistical 
significance of the features in the map to be 0.5 
corresponding to a 2 --~ 0.5 for the error-free data. This 
implies that data with 6 = 0.1 should allow a structure 
completion from inspection of difference maps up to 
al 2 ~ 0.98. With 6 = 0.05 the corresponding value of a 2 
is even greater than 0.99. Hence, in general, accuracy 
of measurement should not be a very critical factor. 

A similar result is obtained from another argument. 
The observed data should meet the condition 

( I F  N -- Fpl)  > <a~-) '/z, (35) 

which can be rewritten in terms of the residual R(F)  
(=(,IFN- F~,I)/(FN)) as 

- -  R ( F )  > e (36) 
2 

since (FN) = (V/-n/2)Xff 2 (Wilson, 1949), Now, using 
the theoretical expression for R(F)  (Srinivasan, Rag- 
hupathy Sarma & Ramachandran,  1963) we find, for 
example, e (a 2 = 0.97) < 0.1 and e (a 2 = 0.99) < 0.06. 
The case that a22 is small occurs especially in protein 
crystallography when difference Fourier maps are used 
to reveal small molecules added to the protein 
(Henderson & Moffat, 1971). 

Equation (25) implies a preponderance of positive 
errors, i.e. F~ > Fu. The resulting bias in the density, 
however, is quite small. The average height of an 
atomic peak in an F~ exp (i~0N) map is obtained as 
(1 + 62)/(1 + 262) I/2 times the true height. 

The author is very grateful to Professor H. Dachs for 
having initiated and supported this work. 
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Abstract  

The numerical integration of the Takagi-Taupin  
equations using a constant step of integration does not 
allow the simulation of traverse topographs since the 
accuracy of the computation is rather poor. A new 

0108-7673/83/050761-07501.50 

algorithm is described in which the step of integration 
varies inside the crystal, following the oscillations of the 
amplitudes of the wavefields. The precision becomes 
good enough to simulate either section topographs, 
taking into account the real width of the incident beam, 
or traverse topographs. Moreover in most cases the 
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time of computation is decreased by a factor of two to 
three. 

Introduction 

The first numerical integration of the Takagi-Taupin 
equations was performed by Authier, Malgrange & 
Tournarie (1968). The method they suggested, the 
so-called 'half-step derivative method', used in con- 
junction with a constant step of integration has been 
very successful. It has been possible to simulate the 
contrast of dislocations in section topographs (Balibar 
& Authier, 1967; Epelboin, 1974; Chukovskii, 1974), 
of planar defects in the Laue-Bragg case (Epelboin, 
1979) and of ferromagnetic walls (Nourtier, Kleman, 
Taupin, Miltat, Labrune & Epelboin, 1979). In the 
Bragg case, Bedynska, Bubakova & Sourek (1976) 
simulated the contrast of a screw dislocation per- 
pendicular to the surface; Riglet, Sauvage, Petroff & 
Epelboin (1980) studied the contrast of a dislocation 
parallel to the surface of a thin crystal. Bragg-case 
experiments have been simulated using an incident 
plane wave: Ishida, Miyamoto & Kohra (1976) 
compared a plane-wave experiment in the Laue case to 
its simulation. 

The use of a constant-step algorithm (CSA) has been 
very useful to determine physical parameters of various 
defects and X-ray topography became a quantitative 
method for characterizing materials. 

Yet many difficulties remain. A rigorous choice of 
the step of integration is rather delicate. It depends 
upon diffraction conditions and theoretically each 
simulation for given reflection conditions would need a 
long and delicate study to determine the best step of 
integration: big enough to allow fast calculations and to 
limit rounding errors, small enough so that the 
numerical equations do not diverge and do not give 
false solutions. In practice this study is done once and a 
given step of integration is used as long as the result 
seems to be satisfactory. Moreover, it is well known 
(Epelboin, 1977) that the direct image of a defect is 
strongly underestimated whenever it exists and no 
studies of this part of the contrast can be done through 
simulations. This is because the Takagi-Taupin (TT) 
equations diverge along the edges of the Borrmann fan: 
a step of integration which is satisfactory in the middle 
of the fan becomes too large along the edges and, as 
explained before, it is not possible to decrease it. 

All these limitations do not come from the half-step 
derivative method itself but from the use of a constant 
step of integration. Very recently, Nourtier & Taupin 
(1983) have shown that this method remains the best 
one for integrating such equations. For a given 
accuracy it is the fastest and simplest algorithm. 

To take into account the divergence of the TT 
equations, Petrashen (1976) suggested decreasing the 
step of integration near the edges of the Borrmann fan. 

But no criterion was given about where to switch from 
one step to the other and how to choose them. No 
proof was given that the direct image of a defect 
became satisfactory. 

In this paper we will present a new method of 
integration of the TT equations based on the half-step 
derivative method. We will explain how it is possible to 
let the step of integration vary in all the Borrmann fan 
and we will compare the accuracy of the varying step 
algorithm (VSA) with the constant-step algorithm 
(CSA). 

First, we will recall the limitations of the CSA, then 
we will explain the basic principles of the VSA. In the 
last part we will show some applications to the study of 
the contrast of dislocations in X-ray section topographs. 

I. Limitations of  constant-step algorithms 

(a) The half-step derivative method 

The half-step derivative method has been explained 
in numerous papers (see, for example, Authier et al., 
1968; Epelboin, 1977) and we will just briefly recall its 
results. 

Let s o and s h be the edges of the Borrmann fan (Fig. 
1). This triangle is divided by a network of character- 
istics parallel to So and Sh, respectively, q is the distance 
between B and A, p the distance between C and A. 

Using the half-step derivatwe method the T I  
equations may be transformed into a set of numerical 
equations where the amplitudes of both reflected and 
refracted waves at a given point A inside the crystal 
depend upon the amplitudes of these waves at points B 
and C only: 

DDO(So, Sh) 
h($O' Sh) ] 

= 1 [ 1 -  

1 - W - - A B  B 
W A ( 1 - W ) A B  A ( I + W ) ]  

wJ AB B 1 + 

I 
Do(so - p ,  Sh)~ 

D h ( S  0 - -  p, Sh) 

Do(so, Sh -- q) | '  

Dh(So, Sh -- q) _~ 

(1) 

P 
Fig. 1. Principle of integration of the "I-r equations. 



Y. EPELBOIN 763 

where 

A = - ( i /2)  rcpk,z,/, 
B = -(i/2) rcqkzh 

W=izrq flh----~S h g .  u ( s  o ,  s h - q/2)]. 

;gh and )Oh are the Fourier components of the dielectric 
susceptibility, g is the reciprocal-lattice vector for the 
reflection studied and u the local deformation of the 
crystal, k = I/2 and flh is a parameter which expresses 
the departure from exact Bragg conditions of the 
incident wave. In the case of an incident spherical wave 
it is null. 

For the CSA p and q are fixed throughout the 
crystal, for the VSA they vary from one point to the 
next. 

(b) Criticism of the CSA 

As already mentioned, the choice of the lengths of p 
and q is delicate. Since the computation time is 
proportional to the number of knots in the network of 
integration, i.e. to 1/p 2 and 1/q 2, p and q must be as 
large as possible. Their lengths are limited by the order 
of approximation of the numerical method (see Epel- 
boin, 1977). 

But the most critical point is that boundary 
conditions along the entrance surface and the edges of 
the Borrmann fan must also be taken into account. We 
will consider only the case of an incident spherical wave 
where the boundary conditions along the surface may 
be simulated by the lightening of one point source only 
because, as will be explained later, the CSA remains 
very satisfactory for simulating plane-wave topo- 
graphs. In the Laue case the amplitude of the wave 
fields oscillates very rapidly along the edges of the 
Borrmann fan. To follow these oscillations p and q 
should be chosen so small that computation time would 
be tremendously long and that double or quadruple 
precision would be needed in the computer to avoid 
numerical errors. Moreover, their values would have to 
be adapted upon changing any geometrical and 
diffraction conditions. The values of the lengths of p 
and q being the result of a compromise explains why 
the direct image of a defect is underestimated: this 
image comes from the interaction of the wave fields 
with the local deformation in a region where the density 
of knots of the network of integration is not large 
enough. 

In most simulations p and q are of the order of 2 to 3 
jgn. This means that the distance A between B and C 
(Fig. 1) varies from 0.3 to 2 gm depending upon the 
values of the Bragg angle. The period of oscillation of 
the amplitude of the wave fields is of the order of 1 ~n 
near the edges of the Borrmann fan and thus they 

cannot be taken into account. The time of computation 
is about 12s using an IBM 370/168 computer 
for a crystal 800 lam thick. This means that a complete 
section topograph is simulated in 10 to 50 min depend- 
ing upon the thickness of the crystal and the height of 
the image. 

Using 1 ~m for p and q would multiply the time of 
computation by a factor of four, which is really 
unrealistic. In the case of an incident plane wave, the 
edges of the Borrmann fan are avoided, the incident 
wave having theoretically an infinite width, thus the 
CSA remains the best algorithm for simulating any 
kind of plane-wave topographs, double-crystal or 
synchrotron radiation experiments.For section topo- 
graphs these limitations remain reasonable as long as 
one is interested in the dynamic or intermediary image 
of a defect but become intolerable for simulating 
traverse topographs where most of the contrast arises 
from the integration of the direct image of the defect in 
the scanning. A detailed discussion and numerical data 
may be found in Epelboin (1977). 

II. Principles of varying-step algorithms 

The purpose of the VSA is to find a way to adapt the 
local steps of integration to the local variations of the 
amplitudes of the wave fields at any point inside the 
Borrmann fan. The best idea would be to choose p and 
q through a trial-and-error method at each step of the 
calculation, so that the network of integration would 
always be adapted to the local diffraction conditions, 
which means that the number of knots would be 
sufficient to describe the amplitude variations of the 
waves at any point inside the crystal. This method leads 
to very complicated algorithms and would require an 
unreasonable computation time. This means that the 
network of integration must be known before starting 
the integration of (1), based on previous knowledge of 
the diffraction and geometrical conditions. 

(a) Choice of the steps along the edges of the 
Borrmann fan 

Since the TT equations diverge along the edges of the 
Borrmann fan the steps p and q must be as small as 
possible near s o and sh. The position of the extinction 
fringes in a perfect crystal is a good criterion to follow 
the oscillations of the amplitude of the wave fields. 
Since analytical solutions exist (Kato, 1961) it is 
possible to determine the position of these fringes along 
the exit surface of the crystal. Let ~ be an axis along 
this surface (Fig. 2). The intensity of the fringes is given 
by the J0 Bessel function and the position of their 
minima may be computed by calculating the zeros of 
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J0. For our purpose an asymptotic development is 
sufficient after the second zero: 

J0(~) ~- cos(~-- n/4). (2) 

Knots of the network of integration are placed along 
so that a reasonable number of points describes the 

variation of intensity between two zeros along the exit 
surface. From these points we draw characteristic lines 
parallel to s o and s h, respectively, and a knot of the 
network of integration will be positioned at each 
intersection of two lines. This gives the network shown 
in Fig. 3. On the edges of the Borrmann fan the steps of 
integration are small enough to follow the oscillations 
of the amplitudes of the waves; in the middle the steps 
increase to rather large values since the amplitude of 
the wave fields varies slowly. 

x y~ 

Fig. 2. Geometry of the computation. 

The upper and lower limits of the lengths of the steps 
is a function of the diffraction conditions; let d be the 
distance between two successive points on the axis ~. 
We may write: 

cos gt 0 
- - A  

P -  sin 20 

cos ~'h 
--A. (3) 

q -  sin 20 

We have tried to determine upper and lower values for 
A which would be valid for most cases. We have 
computed the intensity profile on the exit surface of a 
perfect crystal for various geometries and various 
diffraction conditions and come to the following 
conclusion: a minimum length Am~ . = 0.2 ~trn near the 
edges of the Borrmann fan is satisfactory and a 
maximum length Area x = 1.6 ~rn in the central part of 
the profile also seems to be reasonable. For very high 
quality simulations it might be necessary to decrease it 
to 0.8 ~ to match the best resolution of photographic 
plates. 

Fig. 4 presents intensity profiles computed using the 
VSA in (a) and the CSA in (b). In the first profile we 
note how the intensity increases near the edges 
compared to the drastic decrease seen in (b). The 
number of visible fringes is greater in (a) and is in 
agreement with the theoretical profile. A varies from 
0.2 g.rn near the edges to 1.6 lam in the central part of 
the drawing. A = 0.8 lam in all parts of the image in 
Fig. 4(b). 400 points in the network of integration 
were necessary to describe the exit surface using the 
CSA versus 238 points using the VSA. At the same 
time it was possible to obtain greater accuracy and to 
minimize the calculation. 

In different calculations we have tested larger values 
for Area x but very quickly the approximation became 
too large for an accurate result and 1.6 ~rn seems to be 
the largest reasonable value for Area x. On the other 
hand, a smaller minimum step Ami n does not seem to 
increase the accuracy of the computation. All these 
tests have been done for experimental conditions 
corresponding to a mean extinction distance A varying 
from 20 to 70 ~tm. Minimum values for A should 
certainly be decreased in the case when A/Zlml n ( 100. 

u Z - 

Fig. 3. Principles of the integration network. 

(b) Taking into account the direct image of  a defect 

The direct image of a defect originates from the 
distorted areas which intersect the refracted waves 
propagating along s o . When the photoelectric ab- 
sorption is low most of the contrast of the defect comes 
from the diffraction of these waves. The wave-field 
amplitudes vary tremendously and the local steps p and 
q determined in the perfect crystal may become 
completely inaccurate. It is thus necessary to decrease 



Y. EPELBOIN 765 

their values locally to follow the oscillations of the wave 
fields in the most distorted parts of the crystal. The 
problem is to estimate the size and shape of the area 
where the steps must be modified. 

The criterion we have used is based on the theory of 
the direct image explained by Authier (1967). More 
recently, Miltat & Bowen (1975) have shown that this 
simple theory is in rather good agreement with the 
experiment. 

Authier suggested that the contrast of the direct 
image arises from the areas where the distortion is so 
great and varies so quickly that kinematic diffraction 
becomes a valid approximation. The size of this image 
may be estimated by considering the region where the 
disorientation of the reflecting planes is greater than the 
width of the intrinsic rocking curve at half maximum, 
i.e. 
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Fig. 4. Profile of the reflected intensity along the exit surface. Mo 
Ka,  220 reflection of silicon, 800 p.m thick. (a) VSA Aml n = 
0.2 p.m, A = 1.6 p.m; (b) CSA A -- 0.8 p.m. Intensity units are 
arbitrary a"~ac~ cannot be compared. 
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Fig. 5. Profile of the reflected intensity when the direct image of a 
dislocation exists (see Fig. 6c). Same conditions as before. (a) 

CSA A = 0-8 gm; (b) VSA Aml n = 0.2 grn, Area x = 1.6 /~m 
without refinement for the direct image; (¢) VSA. Same as before 
except in the direct image where A = 0.2 grn. Intensities can be 
compared between (b) and (c). 
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where 70 -- cos ~'0 and 7h = cos ~'h (see Fig. 1). 
Since the disorientation of the net planes is given by 

1 c~ 
~(Ao) - g. u(r), (5) 

k sin 20 c~s h 

we will decrease the steps p and q in the area where 

(~htl/2 
I c~s---~ g" u ( r ) l >  2ka \~0]  (Zh ,~h) 1/2- (6) 

a is a coefficient introduced to adjust the size of the 
computed image to the real experiment as suggested by 
Miltat & Bowen. A value of 1.5 seems reasonable. This 
leads to the network of integration shown in Fig. 3. The 
stems p and q are minimum along the edges of the 
Borrmann fan then increase in the middle of the 
triangle. Locally the steps are set to their minimum 
values in the area where the direct image is formed. 

Since the interaction of a defect with the wave fields 
weakens near s h (Epelboin, 1975) it is not necessary to 
decrease the steps in the right part of the fan to values 
as small as near s o . This reduces the number of knots 
and thus the computation time without degrading the" 
accuracy. Our tests show that a minimum value for A = 
0"8 ~JJ'n IS sufficient near Sh, except along the s h edge 
itself where it must come back to the minimum value 
0.2 ~tm. Fig. 5 shows an intensity profile computed in a 
net plane where the direct image exists for the 
dislocation shown in Fig. 6(c). Fig. 5(a) has been 
calculated using the CSA showing, as explained before, 
the dramatic intensity drop along the edges. Fig. 5(b) is 
computed using the VSA without refinement for the 
direct image. In both Figs. 5(a) and (b) this image 
appears as a series of sharp peaks and its intensity is 
roughly of the same order (the curves cannot be 
directly compared since the normalization is different). 
Fig. 5(c) shows the same profile with refinement of the 
computation for the direct image. The intensity of the 
peaks is dramatically increased. This is more in 
agreement with measured densities of greys in various 

experiments, where the saturation of the photographic 
emulsion may be reached. 

III. Simulation of section topographs 

Fig. 5(c) shows the great advantage of taking into 
account the direct image of a defect but this is unneces- 
sary in the planes of incidence where this image does 
not exist. To simulate section topographs we will thus 
use two different networks: one without refinement for 
the direct image when it does not exist, another in a 
limited number of planes where the direct image is 
formed (Fig. 3). 

To decrease the time of computation we usually 
compute one plane of incidence in three, the two 
missing ones in between being interpolated. This might 
become visible near the direct image where the intensity 
varies too quickly and in this region it may be 
necessary to compute all the planes of incidence. In 
fact, it depends if one is interested in the direct image 
itself or in other parts of the contrast. Fig. 6(a) is the 
simulation of a section topograph in a silicon crystal 
already computed using the VSA as a CSA (Epelboin, 
1974). Fig. 6(b) takes into account the real width of the 
incident beam falling on the crystal. Its extension is of 
the order of l0 lam and the simulation has been 
obtained by adding five different simulations moving 
the point source along the entrance surface. The high 
quality of this simulation, compared to the experiment 
(Fig. 6c) shows the accuracy of the VSA. Moreover, 
the computation itself was done in half the time needed 
for the CSA algorithms. 

Conclusion 

The VSA should replace the CSA in the simulation of 
any section topograph, i.e. when the incident beam is a 

(a) tb) (c) 
Fig. 6. Section topographs for a dislocation b = 1/2 [110]. See Epelboin 0974). Diffraction conditions as before. (a) One point source. 

(b) Addition of five simulations corresponding to an entrance slit of l 0 I~u. (c) Corresponding topograph. 
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spherical wave. It enables faster calculations with much 
higher accuracy. 

This becomes absolutely necessary when one is 
interested in the study of the direct image. As will be 
explained in another paper, it permits the real width of 
the X-ray beam incident on the crystal to be taken into 
account and one may now obtain simulations of very 
high quality. 

We can already announce that the VSA is accurate 
enough to allow the simulation of traverse topographs. 
The work is in progress and the first results are very 
satisfactory. 

Most of the tests were done at the IBM J. J. Watson 
Research Center in Yorktown Heights during time 
spent as a 'World Trade Scientist Visitor'. 

I would like to thank A. Soyer for the final 
debugging of the corresponding simulation program. 
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Abstract 

Experimental topographs may be simulated by addition 
of simulations where one point source is lit on the 
surface of the crystal. The accuracy of a varying-step 
integration of Takagi equations is good enough to allow 
such computations. It is shown that all parts of the 
contrast are sensitive to the width of the entrance slit 
and that accurate characterization of defects must take 
this parameter into account. 

Introduction 

X-ray topography (Lang, 1959) is a very/useful tool for 
studying the perfection of crystalline materials. The 
most widely used method, translation topography, 
allows the characterization of a large volume of the 
crystal in a single experiment. 

0108-7673/83/050767-06501.50 

Section topography allows a much more precise 
study of the defects but the experiment is rather delicate 
and only a small volume of the material is charac- 
terized in one experiment. The quality of the experi- 
mental setting, especially the width and parallelism of 
the entrance slit of the camera, become very important 
and these parameters should be taken into account in 
all theoretical and experimental studies. Usually the 
width of the entrance slit, limiting the incoming beam 
falling on the crystal, is of the order of 10 lam in section 
topographs and may be increased to values of the order 
of 100 ~rn or more in traverse topography. 

It is well known that the quality and number of 
extinction fringes visible in a section topograph depend 
not only on the perfection of the crystal but also on the 
accuracy of the setting and on the width of the 
incoming beam. The narrower the slit is, the greater 
will be the number of observable fringes. Of course this 
is limited by the intensity of the X-ray beam! 

© 1983 International Union of Crystallography 


